DPP - Daily Practice Problems

Chapter-wise Sheets

Date :		Start Time :		End Time :	
--------	--	--------------	--	------------	--

MATHEMATICS CM04

SYLLABUS: Principle of Mathematical Induction

Max. Marks: 120 Marking Scheme: (+4) for correct & (-1) for incorrect answer	Time : 60 min.
--	----------------

INSTRUCTIONS: This Daily Practice Problem Sheet contains 30 MCQs. For each question only one option is correct. Darken the correct circle/ bubble in the Response Grid provided on each page.

- 1. Let P(n): " $2^n < (1 \times 2 \times 3 \times ... \times n)$ ". Then the smallest positive integer for which P(n) is true is
 - (a) 1

(h) 2

(c) 3

- (d) 4
- 2. If P(n): " $46^n + 16^n + k$ is divisible by 64 for $n \in \mathbb{N}$ " is true, then the least negative integral value of k is.
 - (a) -1
- (b) 1
- (c) 2
- (d) -2
- 3. Use principle of mathematical induction to find the value of k, where $(10^{2n-1} + 1)$ is divisible by k.

- (a) 11
- (b) 12
- (c) 13
- (d) 9
- A student was asked to prove a statement P(n) by induction. He proved that P(k+1) is true whenever P(k) is true for all $k>5 \in \mathbb{N}$ and also that P(5) is true. On the basis of this he could conclude that P(n) is true
 - (a) for all $n \in \mathbb{N}$
 - (b) for all n > 5
 - (c) for all $n \ge 5$
 - (d) for all n < 5

RESPONSE GRID 1. a b c d 2. a b c d 3. a b c d 4. a b c d

Space for Rough Work -

м-14

DPP/ CM04

- Let T(k) be the statement $1 + 3 + 5 + ... + (2k-1) = k^2 + 10$ Which of the following is correct?
 - (a) T(1) is true
 - (b) T(k) is true $\Rightarrow T(k+1)$ is true
 - (c) T(n) is true for all $n \in \mathbb{N}$
 - (d) All above are correct
- Let $S(k) = 1 + 3 + 5 \dots + (2k 1) = 3 + k^2$. Then which of the following is true?
 - (a) Principle of mathematical induction can be used to prove the formula
 - (b) $S(k) \Rightarrow S(k+1)$
 - (c) $S(k) \Rightarrow S(k+1)$
 - (d) S(1) is correct
- For natural number n, $2^n(n-1)! < n^n$, if
 - (a) n < 2
- (b) n > 2
- (c) $n \ge 2$
- (d) Never
- For all positive integral values of n, $3^{2n} 2n + 1$ is divisible
 - by
 - (a) 2

(b) 4

- (d) 12
- For every natural number n, n(n+1) is always
 - (a) Even
- (b) Odd
- (c) Multiple of 3
- (d) Multiple of 4

10. If $a_n = \sqrt{7 + \sqrt{7 + \sqrt{7 + \dots}}}$ having n radical signs then by

methods of mathematical induction which is true?

- (a) $a_n > 7 \forall n \ge 1$
- (b) $a_n < 7 \ \forall \ n \ge 1$
- (c) $a_n < 4 \forall n \ge 1$
- (d) $a_n < 3 \ \forall \ n \ge 1$
- 11. For every positive integral value of n, $3^n > n^3$ when
 - (a) n > 2
- (b) $n \ge 3$
- (c) $n \ge 4$
- (d) n < 4
- 12. If $\frac{4^n}{n+1} < \frac{(2n)!}{(n!)^2}$, then P(n) is true for
 - (a) $n \ge 1$
- (b) n > 0
- (c) n < 0
- (d) $n \ge 2$
- 13. If $n \in N$, then $x^{2n-1} + y^{2n-1}$ is divisible by
 - (a) x+y
- (b) x-y
- (c) $x^2 + y^2$
- (d) $x^2 + xy$
- 14. For a positive integer n,

Let
$$a(n) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{(2^n) - 1}$$
. Then

- (a) $a(100) \le 100$
- (b) a(100) > 100
- (c) $a(200) \le 100$
- (d) a(200) < 100

RESPONSE

- 5. abcd
- 6. abcd
- 7. abcd
- 8. abcd
- 9. abcd

GRID

- 10.(a)(b)(c)(d)
- 11. a b c d
- 12. (a) (b) (c) (d)
- 13. (a) (b) (c) (d)
- 14. (a) (b) (c) (d)

Space for Rough Work .

- 15. $2^n > n^2$ when $n \in \mathbb{N}$ such that
 - (a) n > 2
- (b) n > 3
- (c) n < 5
- (d) $n \ge 5$
- **16.** For every natural number n, $n(n^2 1)$ is divisible by
 - (a) 4

(b) 6

(c) 10

- (d) None of these
- 17. If $49^n + 16n + \lambda$ is divisible by 64 for all $n \in \mathbb{N}$, then the least negative value of λ is
 - (a) -2
- (b) -1
- (c) -3

- (d) -4
- **18.** If $n \in \mathbb{N}$ and n is odd, then $n(n^2 1)$ is divisible by
 - (a) 24
- (b) 16
- (c) 32
- (d) 19
- 19. For each $n \in N$, the correct statement is
 - (a) $2^n < n$
- (b) $n^2 > 2n$
- (c) $n^4 < 10^n$
- (d) $2^{3n} > 7n + 1$
- **20.** P(n): $2.7^n + 3.5^n 5$ is divisible by
 - (a) 24, \forall $n \in N$
 - (b) 21, \forall $n \in N$
 - (c) 35, \forall n \in N
 - (d) 50, \forall $n \in N$
- 21. By mathematical induction,

$$\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \dots + \frac{1}{n(n+1)(n+2)}$$
 is equal to

- (a) $\frac{n(n+1)}{4(n+2)(n+3)}$ (b) $\frac{n(n+3)}{4(n+1)(n+2)}$
- (c) $\frac{n(n+2)}{4(n+1)(n+3)}$
- (d) None of these
- 22. For every positive integer n, $7^n 3^n$ is divisible by
 - (a) 7

(b) 3

(c) 4

- (d) 5
- 23. For all $n \in N$, the sum of $\frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15}$ is
 - (a) a negative integer
- (b) a whole number
- (c) a real number
- (d) a natural number
- **24.** For $n \in \mathbb{N}$, $x^{n+1} + (x+1)^{2n-1}$ is divisible by

- (b) x + 1
- (c) $x^2 + x + 1$
- (d) $x^2 x + 1$
- 25. If n is a positive integer, then $5^{2n+2} 24n 25$ is divisible by
 - (a) 574
- (b) 575
- (c) 674
- (d) 576
- **26.** For all $n \ge 1$,

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} =$$

- (b) $\frac{1}{n+1}$
- (d) None of these

RESPONSE

- 15. (a) (b) (c) (d)
- 16. (a) (b) (c) (d) 21.(a)(b)(c)(d)
- 17. (a) (b) (c) (d) 22. (a) (b) (c) (d)
- 18. (a) (b) (c) (d) 23. (a) (b) (c) (d)
- 19. abcd 24. (a) (b) (c) (d)

- 20. (a) (b) (c) (d) GRID 25. a b c d
- 26. (a) (b) (c) (d)

Space for Rough Work .

■ M-16 ■ DPP/ CM04

- 27. By the principle of induction \forall n \in N, 3^{2n} when divided by 8, leaves remainder
 - (a) 2
- (b) 3
- (c) 7

- (d) 1
- **28.** Statement-1: $1 + 2 + 3 + \dots + n < \frac{1}{8}(2n + 1)^2$, $n \in \mathbb{N}$.

Statement-2: n(n + 1) (n + 5) is a multiple of 3, $n \in N$.

- (a) Only Statement-1 is true
- (b) Only Statement-2 is true
- (c) Both Statements are true
- (d) Both Statements are false
- **29.** Statement-1: For every natural number $n \ge 2$,

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}$$

Statement-2: For every natural number $n \ge 2$,

$$\sqrt{n(n+1)} < n+1.$$

- (a) Statement-1 is correct, Statement-2 is correct; Statement-2 is a correct explanation for Statement-1.
- (b) Statement-1 is correct, Statement-2 is correct; Statement-2 is not a correct explanation for Statement-1
- (c) Statement-1 is correct, Statement-2 is incorrect
- (d) Statement-1 is incorrect, Statement-2 is correct.
- 30. For all $n \in \mathbb{N}$, $41^n 14^n$ is a multiple of
 - (a) 26
- (b) 27
- (c) 25
- (d) None of these

RESPONSE GRID

27. a b c d

28. a b c d

29. a b c d

30. a b c d

DAILY PRACTICE PROBLEM DPP CHAPTERWISE 4 - MATHEMATICS						
Total Que <mark>st</mark> ions	30	Total Marks	<mark>1</mark> 20			
Attempted		Correct				
Incorrect		Net Score				
Cut-off Sc <mark>o</mark> re	40	Qualifying Score	<mark>5</mark> 5			
Suc <mark>ce</mark> ss Gap = Net Score — Qualifying Score						
Net Score = (Correct × 4) – (Incorrect × 1)						

Space for Rough Work