DPP - Daily Practice Problems

Chapter-wise Sheets

Date :	Start Time :	End Time :	

SYLLABUS: Complex Numbers And Quadratic Equations

Max. Marks: 120 Marking Scheme: (+4) for correct & (-1) for incorrect answer Time: 60 min.

INSTRUCTIONS: This Daily Practice Problem Sheet contains 30 MCQs. For each question only one option is correct. Darken the correct circle/ bubble in the Response Grid provided on each page.

- 1. The smallest positive integer *n* for which $(1+i)^{2n} = (1-i)^{2n}$ is:
 - (a) 1

(b) 2

(c)

- (d) 4
- 2. If α and β be the roots of $x^2 + px + q = 0$, then

 $\frac{(\omega\alpha + \omega^2\beta)(\omega^2\alpha + \omega\beta)}{\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}}$ is equal to (ω, ω^2) are complex cube

roots of unity)

- (a) $-\frac{q}{p}$
- (b) αβ
- (c) $-\frac{p}{q}$
- (d) ω

3. If α , β be the roots of the equation $x^2 - px + q = 0$, then the equation whose roots are

$$\alpha^2 \left(\frac{\alpha^2}{\beta} - \beta \right)$$
 and $\beta^2 \left(\frac{\beta^2}{\alpha} - \alpha \right)$ is

- (a) $qx^2 p(p^2 q)(p^2 4q)x p^2q^2(p^2 4q) = 0$
- (b) $px^2 q(p^2 p)(p^2 4q)x + p^2q^2(p^2 4q) = 0$
- (c) $px^2 qx + p = 0$
- (d) None of these

RESPONSE GRID

- 1. (a)(b)(c)(d)
- 2. abcd
- **3. abcd**

_ Space for Rough Work _

м-18

- DPP/ CM05

If α and β be the values of x in $m^2(x^2-x)+2mx+3=0$ and m_1 and m_2 be two values of m for which α and β are

connected by the relation $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{4}{3}$. Then the value of

$$\frac{m_1^2}{m_2} + \frac{m_2^2}{m_1}$$
 is

(a) 6

- (b) 68
- (c) $\frac{3}{68}$ (d) $-\frac{68}{3}$
- If $z_1 = \sqrt{3} + i\sqrt{3}$ and $z_2 = \sqrt{3} + i$, then in which quadrant 11.

$$\left(\frac{z_1}{z_2}\right)$$
 lies?

- (b) II
- The root of the equation $2(1+i)x^2 4(2-i)x 5 3i = 0$ which has greater modulus is
- (c) $\frac{3-i}{2}$
- (d) None of these
- Value of $\frac{(\cos\theta + i\sin\theta)^4}{(\cos\theta i\sin\theta)^3}$ is
 - (a) $\cos 5\theta + i \sin 5\theta$
- (b) $\cos 7\theta + i \sin 7\theta$
- (c) $\cos 4\theta + i \sin 4\theta$
- (d) $\cos \theta + i \sin \theta$
- Number of solutions of the equation, $z^3 + \frac{3|z|^2}{z} = 0$, where

z is a complex number and $|z| = \sqrt{3}$ is

(c) 6

- (d) 4

If z = x + iy is a variable complex number such that

$$arg \frac{z-1}{z+1} = \frac{\pi}{4}$$
 then:

- (a) $x^2 y^2 2x = 1$ (b) $x^2 + y^2 2x = 1$ (c) $x^2 + y^2 2y = 1$ (d) $x^2 + y^2 + 2x = 1$
- 10. Let a > 0, b > 0 and c > 0. Then both the roots of the equation
 - (a) are real and negative
 - (b) have negative real parts
 - (c) are rational numbers
 - (d) None of these
- Let z lies on the circle centred at the origin. If area of the triangle whose vertices are z, ωz and $z+\omega z$, where ω is the cube root of unity is $4\sqrt{3}$ sq. unit. Then radius of the circle

is:

- (a) 1 unit
- (b) 2 units
- (c) 4 units
- (d) None of these
- For a complex number z, the minimum value of |z| + |z-2| is
 - (a) 1

(b) 2

(c) 3

- (d) None of these
- 13. The complex number z satisfying the equations

$$|z|-4 = |z-i| = |z+5i| = 0$$
, is

- (b) $2\sqrt{3} 2i$
- (c) $-2\sqrt{3} + 2i$
- 14. If α, β, γ and a, b, c are complex numbers such that

 $\frac{\alpha}{a} + \frac{\beta}{b} + \frac{\gamma}{c} = 1 + i$ and $\frac{a}{\alpha} + \frac{b}{\beta} + \frac{c}{\gamma} = 0$, then the value of

$$\frac{\alpha^2}{a^2} + \frac{\beta^2}{b^2} + \frac{\gamma^2}{c^2}$$
 is equal to

(c) 0

(b) 2*i* (d) +1

- 4. abcd
- 5. abcd
- 6. a b c d 7. a b c d 11. a b c d 12. a b c d
- 8. abcd

- RESPONSE GRID
- 9. abcd 14. (a) (b) (c) (d)
- 10. a b c d

- 13. (a) (b) (c) (d)

- 15. If $(7-4\sqrt{3})^{x^2-4x+3} + (7+4\sqrt{3})^{x^2-4x+3} = 14$, then the value of x is given by
 - (a) $2, 2 \pm \sqrt{2}$ (c) $3 \pm \sqrt{2}, 2$
- (b) $2 \pm \sqrt{3}, 3$ (d) None of the
- (d) None of these
- 16. If α , β be the roots of $ax^2 + bx + c = 0$ and γ , δ those of $lx^2 + mx + n = 0$, then the equation whose roots are $\alpha y + \beta \delta$ and $\alpha \delta + \beta \gamma$ is
 - (a) $a^2l^2x^2 ablmx + b^2l n + acm^2 4acl n = 0$
 - (b) $alx^2 ablmx + (a+b-c)(l+m-n) = 0$
 - (c) $a^2l^2x^2 + (a^2 + b^2)(l^2 + m^2)x (a+b-c)(l+m-n) = 0$
 - (d) None of these

- 18. If x is real, the maximum value of $\frac{3x^2 + 9x + 17}{3x^2 + 9x + 7}$ is

- **19.** $\left(\frac{1}{1-2i} + \frac{3}{1+i}\right) \left(\frac{3+4i}{2-4i}\right)$ is equal to :
 - (a) $\frac{1}{2} + \frac{9}{2}i$
- (b) $\frac{1}{2} \frac{9}{2}i$
- (c) $\frac{1}{4} \frac{9}{4}i$
- (d) $\frac{1}{4} + \frac{9}{4}i$

- 20. If p, q, r are non-zero real numbers, the two equation, $2a^2x^2 - 2abx + b^2 = 0$ and $p^2x^2 + 3pqx + q^2 = 0$
 - (a) no common root
 - (b) one common root if $2a^2 + b^2 = p^2 + q^2$
 - (c) two common roots if 3pq = 2ab
 - (d) two common roots if 3qb = 2 ap
- 21. The centre of a regular hexagon is at the point z = i. If one of its vertices is at 2 + i, then the adjacent vertices of 2 + i are at the points
 - (a) $1\pm 2i$
- (b) $i+1\pm\sqrt{3}$
- (c) $2 + i(1 \pm \sqrt{3})$
- (d) $1+i(1\pm\sqrt{3})$
- 22. If a, b, c are real numbers $a \ne 0$. If α , is a root of $a^2x^2 + bx$ +c=0, β is a root of $a^2x^2-bx-c=0$ and $0 < \alpha < \beta$, then the equation $a^2x^2 + 2bx + 2c = 0$ has a γ root that always satisfies:
- (b) $\gamma = \frac{\alpha \beta}{2}$
- (c) $\gamma = \alpha$
- (d) $\alpha < \gamma < \beta$
- 23. If the roots of the equation (x-a)(x-b) + (x-b)(x-c) + (x-c)(x-a) = 0 are equal, then $a^2 + b^2 + c^2 =$
 - (a) a + b + c
- (b) 2a + b + c
- (c) 3*abc*
- (d) ab + bc + ca
- If $|\mathbf{a} + i\mathbf{b}| = 1$, then the simplified form of $\frac{1 + \mathbf{b} + ai}{1 + \mathbf{b} ai}$ is
 - (a) b + ai
- (b) a + bi
- (c) $(1+b)^2+a^2$
- (d) ai

RESPONSE

- 15.(a)(b)(c)(d)
- 16.(a)(b)(c)(d)
- 17. (a) (b) (c) (d)
- 18. (a) (b) (c) (d)
- 19. (a) (b) (c) (d)

- GRID
- 20. (a) (b) (c) (d)
- 21.(a)(b)(c)(d)
- 22. a b c d
- 23. (a) (b) (c) (d)
- **24.** (a) (b) (c) (d)

м-20 DPP/ CM05

25. Let a, b, c, p, q be real numbers. Suppose α , β are the roots

of the equation $x^2 + 2px + q = 0$ and α , $\frac{1}{8}$ are the roots of the

equation $x^2 + 2bx + c = 0$, where $\beta^2 \notin (-1, 0, 1)$

Statement-1: $(p^2 - q)(b^2 - ac) \ge 0$

Statement-2: $b \neq pa$ or $c \neq qa$

- (a) Statement -1 is true, Statement -2 is true; Statement -2 is a correct explanation for Statement-1
- (b) Statement -1 is true, Statement -2 is true; Statement -2 is NOT a correct explanation for Statement-1
- (c) Statement -1 is false, Statement-2 is true
- (d) Statement -1 is true, Statement-2 is false
- **26.** If ω is a non-real cube root of unity, then

$$\frac{1 + 2\omega + 3\omega^{2}}{2 + 3\omega + \omega^{2}} + \frac{2 + 3\omega + 3\omega^{2}}{3 + 3\omega + 2\omega^{2}}$$
 is equal to

- (a) -2ω
- (b) 2ω

(c) ω

(d) 0

- 27. If α , β are the roots of the equation $ax^2 + bx + c = 0$ such that $\beta < \alpha < 0$, then the quadratic equation whose roots are $|\alpha|$, $|\beta|$, is given by (a) $|a|x^2 + |b|x + |c| = 0$
- (b) $ax^2 |b|x + c = 0$
- (c) $|a|x^2 |b|x + |c| = 0$
- (d) $a|x|^2 + b|x| + |c| = 0$
- 28. If z = 2 + i, then $(z-1)(\overline{z}-5) + (\overline{z}-1)(z-5)$ is equal to
 - (a) 2
- (b) 7
- (c) -1(d) -4
- **29.** If α , β are the roots of the equation $2x^2 + 6x + b = 0$, (b < 0)

then
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$
 is less than:

(a) 1

(c) 2

- (d) -2
- A + iB form of $\frac{(\cos x + i \sin x)(\cos y + \frac{i \sin y}{i \sin y})}{(\cot u + i)(1 + i \tan y)}$ is equal to:
 - (a) $\sin u \cos v [\cos (x+y-u-v)+i \sin (x+y-u-v)]$
 - (b) $\sin u \cos v [\cos (x+y+u+v)+i \sin (x+y+u+v)]$
 - $\sin u \cos v \left[\cos (x+y+u+v) i \sin (x+y-u+v)\right]$
 - None of these

RESPONSE **G**RID

- 25. a b c d 30. a b c d
- 26. (a) (b) (c) (d)
- 27. (a) (b) (c) (d)
- 28. (a) (b) (c) (d)
- **29.** (a) (b) (c) (d)

DAILY PRACTICE PROBLEM DPP CHAPTERWISE 5 - MATHEMATICS						
Total Questions	30	Total Marks	<mark>1</mark> 20			
Attempted		Correct				
Incorrect		Net Score				
Cut-off Sc <mark>o</mark> re	37	Qualifying Score	<mark>5</mark> 5			
Suc <mark>ce</mark> ss Gap =						

Space for Rough Work

Net Score = (Correct \times 4) – (Incorrect \times 1)